

 EUROPEAN COMMITTEE FOR STANDARDIZATION C O M I T É E U R O P É E N D E N O R M A L I S A T I O N E U R O P Ä I S C H E S K O M I T E E F Ü R N O R M U N G
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2020 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No.:CWA 16926-16:2020 E

CEN

WORKSHOP

AGREEMENT

 CWA 16926-16 February 2020

ICS 35.200; 35.240.15; 35.240.40
English version Extensions for Financial Services (XFS) interface specification Release 3.40 - Part 16: Card Dispenser Device Class Interface - Programmer's Reference

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of which is indicated in the foreword of this Workshop Agreement. The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National Members of CEN but neither the National Members of CEN nor the CEN-CENELEC Management Centre can be held accountable for the technical content of this CEN Workshop Agreement or possible conflicts with standards or legislation. This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members. This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

CWA 16926-16:2020 (E)

2

Table of Contents

European Foreword .. 3

1. Introduction .. 7

1.1 Background to Release 3.40 ... 7

1.2 XFS Service-Specific Programming ... 7

2. Card Dispensers .. 9

3. References ... 10

4. Info Commands ... 11

4.1 WFS_INF_CRD_STATUS ... 11

4.2 WFS_INF_CRD_CAPABILITIES .. 14

4.3 WFS_INF_CRD_CARD_UNIT_INFO .. 16

5. Execute Commands .. 18

5.1 WFS_CMD_CRD_DISPENSE_CARD .. 18
5.2 WFS_CMD_CRD_EJECT_CARD ... 19

5.3 WFS_CMD_CRD_RETAIN_CARD ... 20

5.4 WFS_CMD_CRD_RESET ... 21

5.5 WFS_CMD_CRD_SET_CARD_UNIT_INFO .. 22

5.6 WFS_CMD_CRD_SET_GUIDANCE_LIGHT .. 23

5.7 WFS_CMD_CRD_POWER_SAVE_CONTROL .. 25
5.8 WFS_CMD_CRD_SYNCHRONIZE_COMMAND ... 26

6. Events ... 27

6.1 WFS_SRVE_CRD_MEDIAREMOVED .. 27

6.2 WFS_SRVE_CRD_MEDIADETECTED .. 28

6.3 WFS_USRE_CRD_CARDUNITTHRESHOLD .. 29

6.4 WFS_SRVE_CRD_CARDUNITINFOCHANGED .. 30
6.5 WFS_EXEE_CRD_CARDUNITERROR .. 31

6.6 WFS_SRVE_CRD_DEVICEPOSITION ... 32

6.7 WFS_SRVE_CRD_POWER_SAVE_CHANGE .. 33

7. C-Header File ... 34

CWA 16926-16:2020 (E)

3

European Foreword

This CEN Workshop Agreement has been developed in accordance with the CEN-CENELEC Guide 29
“CEN/CENELEC Workshop Agreements – The way to rapid consensus” and with the relevant provisions of
CEN/CENELEC Internal Regulations - Part 2. It was approved by a Workshop of representatives of interested
parties on 2019-10-08, the constitution of which was supported by CEN following several public calls for
participation, the first of which was made on 1998-06-24. However, this CEN Workshop Agreement does not
necessarily include all relevant stakeholders.
The final text of this CEN Workshop Agreement was provided to CEN for publication on 2019-12-12.
The following organizations and individuals developed and approved this CEN Workshop Agreement:
• ATM Japan LTD

• AURIGA SPA

• BANK OF AMERICA

• CASHWAY TECHNOLOGY

• CHINAL ECTRONIC FINANCIAL EQUIPMENT SYSTEM CO.

• CIMA SPA

• CLEAR2PAY SCOTLAND LIMITED

• DIEBOLD NIXDORF

• EASTERN COMMUNICATIONS CO. LTD – EASTCOM

• FINANZ INFORMATIK

• FUJITSU FRONTECH LIMITED

• FUJITSU TECHNOLOGY

• GLORY LTD

• GRG BANKING EQUIPMENT HK CO LTD

• HESS CASH SYSTEMS GMBH & CO. KG

• HITACHI OMRON TS CORP.

• HYOSUNG TNS INC

• JIANGSU GUOGUANG ELECTRONIC INFORMATION TECHNOLOGY

• KAL

• KEBA AG

• NCR FSG

• NEC CORPORATION

• OKI ELECTRIC INDUSTRY SHENZHEN

• OKI ELECTRONIC INDUSTRY CO

• PERTO S/A

CWA 16926-16:2020 (E)

4

• REINER GMBH & CO KG

• SALZBURGER BANKEN SOFTWARE

• SIGMA SPA

• TEB

• ZIJIN FULCRUM TECHNOLOGY CO

It is possible that some elements of this CEN/CWA may be subject to patent rights. The CEN-CENELEC policy on
patent rights is set out in CEN-CENELEC Guide 8 “Guidelines for Implementation of the Common IPR Policy on
Patents (and other statutory intellectual property rights based on inventions)”. CEN shall not be held responsible for
identifying any or all such patent rights.
The Workshop participants have made every effort to ensure the reliability and accuracy of the technical and non-
technical content of CWA 16926-16, but this does not guarantee, either explicitly or implicitly, its correctness.
Users of CWA 16926-16 should be aware that neither the Workshop participants, nor CEN can be held liable for
damages or losses of any kind whatsoever which may arise from its application. Users of CWA 16926-16 do so on
their own responsibility and at their own risk.

The CWA is published as a multi-part document, consisting of:

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI) - Programmer's Reference

Part 2: Service Classes Definition - Programmer's Reference

Part 3: Printer and Scanning Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference

Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference

Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Device Class Interface - Programmer's Reference

Part 15: Cash-In Module Device Class Interface - Programmer's Reference

Part 16: Card Dispenser Device Class Interface - Programmer's Reference

Part 17: Barcode Reader Device Class Interface - Programmer's Reference

Part 18: Item Processing Module Device Class Interface - Programmer's Reference

Part 19: Biometrics Device Class Interface - Programmer's Reference

Parts 20 - 28: Reserved for future use.

Parts 29 through 47 constitute an optional addendum to this CWA. They define the integration between the SNMP
standard and the set of status and statistical information exported by the Service Providers.

Part 29: XFS MIB Architecture and SNMP Extensions - Programmer’s Reference

Part 30: XFS MIB Device Specific Definitions - Printer Device Class

Part 31: XFS MIB Device Specific Definitions - Identification Card Device Class

Part 32: XFS MIB Device Specific Definitions - Cash Dispenser Device Class

Part 33: XFS MIB Device Specific Definitions - PIN Keypad Device Class

CWA 16926-16:2020 (E)

5

Part 34: XFS MIB Device Specific Definitions - Check Reader/Scanner Device Class

Part 35: XFS MIB Device Specific Definitions - Depository Device Class

Part 36: XFS MIB Device Specific Definitions - Text Terminal Unit Device Class

Part 37: XFS MIB Device Specific Definitions - Sensors and Indicators Unit Device Class

Part 38: XFS MIB Device Specific Definitions - Camera Device Class

Part 39: XFS MIB Device Specific Definitions - Alarm Device Class

Part 40: XFS MIB Device Specific Definitions - Card Embossing Unit Class

Part 41: XFS MIB Device Specific Definitions - Cash-In Module Device Class

Part 42: Reserved for future use.

Part 43: XFS MIB Device Specific Definitions - Vendor Dependent Mode Device Class

Part 44: XFS MIB Application Management

Part 45: XFS MIB Device Specific Definitions - Card Dispenser Device Class

Part 46: XFS MIB Device Specific Definitions - Barcode Reader Device Class

Part 47: XFS MIB Device Specific Definitions - Item Processing Module Device Class

Part 48: XFS MIB Device Specific Definitions - Biometrics Device Class

Parts 49 - 60 are reserved for future use.

Part 61: Application Programming Interface (API) - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Service Provider Interface (SPI) - Programmer's Reference

Part 62: Printer and Scanning Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Programmer's Reference

Part 63: Identification Card Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Programmer's Reference

Part 64: Cash Dispenser Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 65: PIN Keypad Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 66: Check Reader/Scanner Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version
3.40 (this CWA) - Programmer's Reference

Part 67: Depository Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 68: Text Terminal Unit Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Programmer's Reference

Part 69: Sensors and Indicators Unit Device Class Interface - Migration from Version 3.30 (CWA 16926) to
Version 3.40 (this CWA) - Programmer's Reference

Part 70: Vendor Dependent Mode Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version
3.40 (this CWA) - Programmer's Reference

Part 71: Camera Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this CWA) -
Programmer's Reference

Part 72: Alarm Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this CWA) -
Programmer's Reference

Part 73: Card Embossing Unit Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Programmer's Reference

Part 74: Cash-In Module Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 75: Card Dispenser Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

CWA 16926-16:2020 (E)

6

Part 76: Barcode Reader Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 77: Item Processing Module Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version
3.40 (this CWA) - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a
complementary document, called Release Notes. The Release Notes contain clarifications and explanations on the
CWA specifications, which are not requiring functional changes. The current version of the Release Notes is
available online from: https://www.cen.eu/work/Sectors/Digital_society/Pages/WSXFS.aspx.

The information in this document represents the Workshop's current views on the issues discussed as of the date of
publication. It is provided for informational purposes only and is subject to change without notice. CEN makes no
warranty, express or implied, with respect to this document.

https://www.cen.eu/work/Sectors/Digital_society/Pages/WSXFS.aspx

CWA 16926-16:2020 (E)

7

1. Introduction

1.1 Background to Release 3.40

The CEN/XFS Workshop aims to promote a clear and unambiguous specification defining a multi-vendor software
interface to financial peripheral devices. The XFS (eXtensions for Financial Services) specifications are developed
within the CEN (European Committee for Standardization/Information Society Standardization System) Workshop
environment. CEN Workshops aim to arrive at a European consensus on an issue that can be published as a CEN
Workshop Agreement (CWA).

The CEN/XFS Workshop encourages the participation of both banks and vendors in the deliberations required to
create an industry standard. The CEN/XFS Workshop achieves its goals by focused sub-groups working
electronically and meeting quarterly.

Release 3.40 of the XFS specification is based on a C API and is delivered with the continued promise for the
protection of technical investment for existing applications. This release of the specification extends the
functionality and capabilities of the existing devices covered by the specification. Notable enhancements include:

• Common API level based ‘Service Information’ command to report Service Provider information,
data and versioning.

• Common API level based events to report changes in status and invalid parameters.

• Support for Advanced Encryption Standard (AES) in PIN.

• VDM Entry Without Closing XFS Service Providers.

• Addition of a Biometrics device class.

• CDM/CIM Note Classification List handling.

• Support for Derived Unique Key Per Transaction (DUKPT) in PIN.

• Addition of Transaction Start/End commands.

• Addition of explicit CIM Prepare/Present commands.

1.2 XFS Service-Specific Programming

The service classes are defined by their service-specific commands and the associated data structures, error codes,
messages, etc. These commands are used to request functions that are specific to one or more classes of Service
Providers, but not all of them, and therefore are not included in the common API for basic or administration
functions.

When a service-specific command is common among two or more classes of Service Providers, the syntax of the
command is as similar as possible across all services, since a major objective of XFS is to standardize function
codes and structures for the broadest variety of services. For example, using the WFSExecute function, the
commands to read data from various services are as similar as possible to each other in their syntax and data
structures.

In general, the specific command set for a service class is defined as a superset of the specific capabilities likely to
be provided by the developers of the services of that class; thus any particular device will normally support only a
subset of the defined command set.

There are three cases in which a Service Provider may receive a service-specific command that it does not support:

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor
implementation of that service does not support it, and the unsupported capability is not considered to be
fundamental to the service. In this case, the Service Provider returns a successful completion, but does no operation.
An example would be a request from an application to turn on a control indicator on a passbook printer; the Service
Provider recognizes the command, but since the passbook printer it is managing does not include that indicator, the
Service Provider does no operation and returns a successful completion to the application.

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor
implementation of that service does not support it, and the unsupported capability is considered to be fundamental
to the service. In this case, a WFS_ERR_UNSUPP_COMMAND error for Execute commands or

CWA 16926-16:2020 (E)

8

WFS_ERR_UNSUPP_CATEGORY error for Info commands is returned to the calling application. An example
would be a request from an application to a cash dispenser to retract items where the dispenser hardware does not
have that capability; the Service Provider recognizes the command but, since the cash dispenser it is managing is
unable to fulfil the request, returns this error.

The requested capability is not defined for the class of Service Providers by the XFS specification. In this case, a
WFS_ERR_INVALID_COMMAND error for Execute commands or WFS_ERR_INVALID_CATEGORY error
for Info commands is returned to the calling application.

This design allows implementation of applications that can be used with a range of services that provide differing
subsets of the functionalities that are defined for their service class. Applications may use the WFSGetInfo and
WFSAsyncGetInfo commands to inquire about the capabilities of the service they are about to use, and modify
their behavior accordingly, or they may use functions and then deal with error returns to make decisions as to how
to use the service.

CWA 16926-16:2020 (E)

9

2. Card Dispensers

This specification describes the functionality of the services provided by the Card Dispenser (CRD) device class
under XFS, by defining the service-specific commands that can be issued, using the WFSGetInfo,
WFSAsyncGetInfo, WFSExecute and WFSAsyncExecute functions.

A Card Dispenser is used to dispense a single card to a consumer from one or more bins. Most card dispensers also
have the ability to retain a card to a bin.

CWA 16926-16:2020 (E)

10

3. References

1. XFS Application Programming Interface (API)/Service Provider Interface (SPI), Programmer’s Reference
Revision 3.40
2. XFS Identification Card Device Class Interface - Programmer's Reference, Revision 3.40

CWA 16926-16:2020 (E)

11

4. Info Commands

4.1 WFS_INF_CRD_STATUS

Description This command is used to request status information for the device.

Input Param None.

Output Param LPWFSCRDSTATUS lpStatus;
typedef struct _wfs_crd_status
 {
 WORD fwDevice;
 WORD fwDispenser;
 WORD fwTransport;
 WORD fwMedia;
 WORD fwShutter;
 LPSTR lpszExtra;
 DWORD dwGuidLights[WFS_CRD_GUIDLIGHTS_SIZE];
 WORD wDevicePosition;
 USHORT usPowerSaveRecoveryTime;
 WORD wAntiFraudModule;
 } WFSCRDSTATUS, *LPWFSCRDSTATUS;

fwDevice
Specifies the state of the card dispensing device as one of the following flags:

Value Meaning
WFS_CRD_DEVONLINE The device is online (i.e. powered on and

operable).
WFS_CRD_DEVOFFLINE The device is offline (e.g. the operator has

taken the device offline by turning a switch).
WFS_CRD_DEVPOWEROFF The device is powered off or physically not

connected.
WFS_CRD_DEVNODEVICE There is no device intended to be there; e.g.

this type of self service machine does not
contain such a device or it is internally not
configured.

WFS_CRD_DEVHWERROR The device is inoperable due to a hardware
error.

WFS_CRD_DEVUSERERROR The device is present but a person is
preventing proper device operation.

WFS_CRD_DEVBUSY The device is busy and unable to process an
execute command at this time.

WFS_CRD_DEVFRAUDATTEMPT The device is present but is inoperable
because it has detected a fraud attempt.

WFS_CRD_DEVPOTENTIALFRAUD The device has detected a potential fraud
attempt and is capable of remaining in
service. In this case the application should
make the decision as to whether to take the
device offline.

fwDispenser
Specifies the state of the card units including all retain bins as one of the following flags:

Value Meaning
WFS_CRD_DISPCUOK All card units present are in a good state.
WFS_CRD_DISPCUSTATE One or more of the card units is in a low,

empty or inoperative condition. Items can
still be dispensed from at least one of the
card units.

WFS_CRD_DISPCUSTOP Due to a card unit failure dispensing is
impossible. No items can be dispensed
because all of the card units are in an empty
or inoperative condition.

CWA 16926-16:2020 (E)

12

WFS_CRD_DISPCUUNKNOWN Due to a hardware error or other condition,
the state of the card units cannot be
determined.

fwTransport
Specifies the state of the transport mechanism as one of the following values:

Value Meaning
WFS_CRD_TPOK The transport is in a good state.
WFS_CRD_TPINOP The transport is inoperative due to a

hardware failure or media jam.
WFS_CRD_TPUNKNOWN Due to a hardware error or other condition,

the state of the transport cannot be
determined.

WFS_CRD_TPNOTSUPPORTED The physical device has no transport or
transport state reporting is not supported.

fwMedia
Specifies the state of a card that may or may not be present in the device. A card becomes media
when it is moved from a dispense card unit. It will be one of the following values:

Value Meaning
WFS_CRD_MEDIAPRESENT Media is present in the device, but not in the

exiting position and not jammed.
WFS_CRD_MEDIANOTPRESENT Media is not present in the device and not at

the exiting position.
WFS_CRD_MEDIAJAMMED Media is jammed in the device.
WFS_CRD_MEDIANOTSUPP Capability to report media position is not

supported by the device.
WFS_CRD_MEDIAUNKNOWN The media state cannot be determined with

the device in its current state.
WFS_CRD_MEDIAEXITING Media is at the exit slot of the card dispenser

unit.

fwShutter
Specifies the state of the shutter as one of the following flags:

Value Meaning
WFS_CRD_SHTCLOSED The shutter is closed.
WFS_CRD_SHTOPEN The shutter is opened.
WFS_CRD_SHTJAMMED The shutter is jammed.
WFS_CRD_SHTUNKNOWN Due to a hardware error or other condition,

the state of the shutter cannot be determined.
WFS_CRD_SHTNOTSUPPORTED The physical device has no shutter or shutter

state reporting is not supported.

lpszExtra
Pointer to a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null
characters.

dwGuidLights [...]
Specifies the state of the guidance light indicators. A number of guidance light types are defined
below. Vendor specific guidance lights are defined starting from the end of the array. The
maximum guidance light index is WFS_CRD_GUIDLIGHTS_MAX.

Specifies the state of the guidance light indicator as
WFS_CRD_GUIDANCE_NOT_AVAILABLE, WFS_CRD_GUIDANCE_OFF or a combination
of the following flags consisting of one type B, optionally one type C and optionally one type D.

Value Meaning Type
WFS_CRD_GUIDANCE_NOT_AVAILABLE The status is not available. A
WFS_CRD_GUIDANCE_OFF The light is turned off. A
WFS_CRD_GUIDANCE_SLOW_FLASH The light is blinking slowly. B

CWA 16926-16:2020 (E)

13

WFS_CRD_GUIDANCE_MEDIUM_FLASH The light is blinking medium B
frequency.

WFS_CRD_GUIDANCE_QUICK_FLASH The light is blinking quickly. B
WFS_CRD_GUIDANCE_CONTINUOUS The light is turned on B

continuous (steady).
WFS_CRD_GUIDANCE_RED The light is red. C
WFS_CRD_GUIDANCE_GREEN The light is green. C
WFS_CRD_GUIDANCE_YELLOW The light is yellow. C
WFS_CRD_GUIDANCE_BLUE The light is blue. C
WFS_CRD_GUIDANCE_CYAN The light is cyan. C
WFS_CRD_GUIDANCE_MAGENTA The light is magenta. C
WFS_CRD_GUIDANCE_WHITE The light is white. C
WFS_CRD_GUIDANCE_ENTRY The light is in the entry state. D
WFS_CRD_GUIDANCE_EXIT The light is in the “exit” state. D

dwGuidLights [WFS_CRD_GUIDANCE_CARDDISP]
Specifies the state of the guidance light indicator on the card dispensing unit.

wDevicePosition
Specifies the device position. The device position value is independent of the fwDevice value, e.g.
when the device position is reported as WFS_CRD_DEVICENOTINPOSITION, fwDevice can
have any of the values defined above (including WFS_CRD_DEVONLINE or
WFS_CRD_DEVOFFLINE). If the device is not in its normal operating position (i.e.
WFS_CRD_DEVICEINPOSITION) then media may not be presented through the normal
customer interface. This value is one of the following values:

Value Meaning
WFS_CRD_DEVICEINPOSITION The device is in its normal operating

position, or is fixed in place and cannot be
moved.

WFS_CRD_DEVICENOTINPOSITION The device has been removed from its
normal operating position.

WFS_CRD_DEVICEPOSUNKNOWN Due to a hardware error or other condition,
the position of the device cannot be
determined.

WFS_CRD_DEVICEPOSNOTSUPP The physical device does not have the
capability of detecting the position.

usPowerSaveRecoveryTime
Specifies the actual number of seconds required by the device to resume its normal operational
state from the current power saving mode. This value is zero if either the power saving mode has
not been activated or no power save control is supported.

wAntiFraudModule
Specifies the state of the anti-fraud module as one of the following values:

Value Meaning
WFS_CRD_AFMNOTSUPP No anti-fraud module is available.
WFS_CRD_AFMOK Anti-fraud module is in a good state and no

foreign device is detected.
WFS_CRD_AFMINOP Anti-fraud module is inoperable.
WFS_CRD_AFMDEVICEDETECTED Anti-fraud module detected the presence of a

foreign device.
WFS_CRD_AFMUNKNOWN The state of the anti-fraud module cannot be

determined.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.
Comments Applications which require or expect specific information to be present in the lpszExtra parameter

may not be device or vendor-independent. If the CRD device is part of a compound device with
an IDC device then a dispense to transport can allow the IDC interface to be used to read/write
from the card.

In the case where communications with the device has been lost, the fwDevice field will report
WFS_CRD_DEVPOWEROFF when the device has been removed or
WFS_CRD_DEVHWERROR if the communications are unexpectedly lost. All other fields will
report their status as unknown.

CWA 16926-16:2020 (E)

14

4.2 WFS_INF_CRD_CAPABILITIES

Description This command is used to request device capability information.

Input Param None.

Output Param LPWFSCRDCAPS lpCaps;
typedef struct _wfs_crd_caps
 {
 WORD wClass;
 BOOL bCompound;
 WORD fwPowerOnOption;
 WORD fwPowerOffOption;
 BOOL bCardTakenSensor;
 WORD fwDispenseTo;
 LPSTR lpszExtra;
 DWORD dwGuidLights[WFS_CRD_GUIDLIGHTS_SIZE];
 BOOL bPowerSaveControl;
 BOOL bAntiFraudModule;
 LPDWORD lpdwSynchronizableCommands;
 } WFSCRDCAPS, *LPWFSCRDCAPS;

wClass
Specifies the logical service class as WFS_SERVICE_CLASS_CRD.

bCompound
Specifies whether the logical device is part of a compound physical device.

fwPowerOnOption
Specifies the power-on capabilities of the device hardware, as one of the following flags;
applicable only to motor driven ID card units.

Value Meaning
WFS_CRD_NOACTION No power on actions are supported by the

device.
WFS_CRD_EJECT The card will be ejected on power-on (or off,

see fwPowerOffOption below).
WFS_CRD_RETAIN The card will be retained on power-on (off).
WFS_CRD_EJECTTHENRETAIN The card will be ejected for a specified time

after power-on then retained if not taken.
The time for which the card is ejected is
vendor dependent.

fwPowerOffOption
Specifies the power-off capabilities of the device hardware, as one of the flags specified for
fwPowerOnOption.

bCardTakenSensor
Specifies whether or not the card dispenser has the ability to detect when a card is taken from the
exit slot by a user. TRUE means a sensor exists and the “card taken” condition can be detected. In
this case a WFS_SRVE_CRD MEDIATAKEN event will be generated when the card is removed.
If set to FALSE then no event will be generated.

fwDispenseTo
Specifies where a card will be dispensed to as a combination of the following flags:

Value Meaning
WFS_CRD_DISPTO_CONSUMER A dispensed card can be delivered to the exit

slot for the consumer to take.
WFS_CRD_DISPTO_TRANSPORT A dispensed card can be delivered into the

transport mechanism. The application must
use WFS_CMD_CRD_EJECT_CARD to
deliver the card to the consumer.

CWA 16926-16:2020 (E)

15

lpszExtra
Pointer to a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null
characters.

dwGuidLights [...]
Specifies which guidance lights are available. A number of guidance light types are defined
below. Vendor specific guidance lights are defined starting from the end of the array. The
maximum guidance light index is WFS_CRD_GUIDLIGHTS_MAX.

In addition to supporting specific flash rates and colors, some guidance lights also have the
capability to show directional movement representing “entry” and “exit”. The “entry” state gives
the impressions of leading a user to place media into a device and would be used for insertion of
card or media. The “exit” state gives the impression of ejection from a device to a user and would
be used for retrieving card and media from the machine.

The elements of this array are specified as a combination of the following flags and indicate all of
the possible flash rates (type B), colors (type C) and directions (type D) that the guidance light
indicator is capable of handling. If the guidance light indicator only supports one color then no
value of type C is returned. If the guidance light indicator does not support direction then no value
of type D is returned. A value of WFS_CRD_GUIDANCE_NOT_AVAILABLE indicates that the
device has no guidance light indicator or the device controls the light directly with no application
control possible.

Value Meaning Type
WFS_CRD_GUIDANCE_NOT_AVAILABLE There is no guidance light control A

available at this position.
WFS_CRD_GUIDANCE_OFF The light can be off. B
WFS_CRD_GUIDANCE_SLOW_FLASH The light can blink slowly. B
WFS_CRD_GUIDANCE_MEDIUM_FLASH The light can blink medium B

frequency.
WFS_CRD_GUIDANCE_QUICK_FLASH The light can blink quickly. B
WFS_CRD_GUIDANCE_CONTINUOUS The light can be B

continuous (steady).
WFS_CRD_GUIDANCE_RED The light can be red. C
WFS_CRD_GUIDANCE_GREEN The light can be green. C
WFS_CRD_GUIDANCE_YELLOW The light can be yellow. C
WFS_CRD_GUIDANCE_BLUE The light can be blue. C
WFS_CRD_GUIDANCE_CYAN The light can be cyan. C
WFS_CRD_GUIDANCE_MAGENTA The light can be magenta. C
WFS_CRD_GUIDANCE_WHITE The light can be white. C
WFS_CRD_GUIDANCE_ENTRY The light is in the entry state. D
WFS_CRD_GUIDANCE_EXIT The light is in the “exit” state. D

dwGuidLights [WFS_CRD_GUIDANCE_CARDDISP]
Specifies whether the guidance light indicator on the card unit is available.

bPowerSaveControl
Specifies whether power saving control is available. This can either be TRUE if available or
FALSE if not available.

bAntiFraudModule
Specifies whether the anti-fraud module is available. This can either be TRUE if available or
FALSE if not available.

lpdwSynchronizableCommands
Pointer to a zero-terminated list of DWORDs which contains the execute command IDs that can
be synchronized. If no execute command can be synchronized then this parameter will be NULL.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which require or expect specific information to be present in the lpszExtra parameter
may not be device or vendor-independent. If the CRD device is part of a compound device with
an IDC device then a dispense to transport can allow the IDC interface to be used to read/write
from the card.

CWA 16926-16:2020 (E)

16

4.3 WFS_INF_CRD_CARD_UNIT_INFO

Description This command is used to obtain information regarding the status and contents of the card units in
the CRD.

Counts
The values of the following fields of the WFSCRDCARDUNIT
ulCount
ulRetainCount
are persistent software counts and therefore may not represent the actual number of items in the
card unit.

Persistent values are maintained through power failures, open sessions, close session and system
resets.

Threshold Events
The threshold event WFS_USRE_CRD_CARDUNITTHRESHOLD can be triggered either by
hardware sensors in the device or by the ulCount reaching the ulThreshold value.

The application can check if the device has this capability by querying the bHardwareSensor field
of the card unit structure.

Input Param None.

Output Param LPWFSCRDCUINFO lpCardUnitInfo;
typedef struct _wfs_crd_cu_info
 {
 USHORT usCount;
 LPWFSCRDCARDUNIT *lppList;
 } WFSCRDCUINFO, *LPWFSCRDCUINFO;

usCount
Specifies the number of card unit structures returned.

lppList
Pointer to an array of pointers to WFSCRDCARDUNIT structures:

typedef struct _wfs_crd_cardunit
 {
 USHORT usNumber;
 LPSTR lpszCardName;
 USHORT usType;
 ULONG ulInitialCount;
 ULONG ulCount;
 ULONG ulRetainCount;
 ULONG ulThreshold;
 USHORT usStatus;
 BOOL bHardwareSensor;
 } WFSCRDCARDUNIT, *LPWFSCRDCARDUNIT;

usNumber
Index number of the card unit structure. Each structure has a unique logical number starting
with a value of one (1) for the first structure, and incrementing by one for each subsequent
structure.

lpszCardName
An identifier which is used to identify the type of cards in the card unit.

usType
Type of card unit as one of the following values:

Value Meaning
WFS_CRD_SUPPLYBIN The card unit is a supply card unit.
WFS_CRD_RETAINBIN The card unit is a retain card unit.

ulInitialCount
Initial number of items contained in the card unit. This value is persistent.

CWA 16926-16:2020 (E)

17

ulCount
The number of items inside the card unit plus any items from the card units not yet presented
to the customer. This count is decremented when the items are either presented to the customer
or retained. This count is incremented for a retain bin after a retain operation.

If this value reaches zero it will not decrement further but will remain at zero. This value is
persistent.

ulRetainCount
The number of items from this card unit which are in the retain bin. This field is always zero
for a retain bin. This value is persistent.

ulThreshold
When ulCount reaches this value the WFS_USRE_CRD_CARDUNITTHRESHOLD
threshold event will be generated. A WFS_CRD_STATCUHIGH threshold will be sent for
WFS_CRD_RETAINBIN or WFS_CRD_STATCULOW for a WFS_CRD_SUPPLYBIN. If
this value is non-zero then hardware sensors in the device do not trigger threshold events.

usStatus
Supplies the status of the card unit as one of the following values:

Value Meaning
WFS_CRD_STATCUOK The card supply or retain unit is in a

good state.
WFS_CRD_STATCULOW The card supply unit is almost empty.
WFS_CRD_STATCUEMPTY The card supply unit is empty.
WFS_CRD_STATCUINOP The card supply or retain unit is

inoperative.
WFS_CRD_STATCUMISSING The card supply or retain unit is missing.
WFS_CRD_STATCUHIGH The retain card unit is almost full.
WFS_CRD_STATCUFULL The retain card unit is full.
WFS_CRD_STATCUUNKNOWN The status of the card unit cannot be

determined.

bHardwareSensor
Specifies whether or not threshold events can be generated based on hardware sensors in the
device. This applies to WFS_CRD_STATCULOW and WFS_CRD_STATCUHIGH
thresholds only. If this value is TRUE then threshold events may be generated based on
hardware sensors as opposed to counts. If ulThreshold is non zero then hardware triggers are
ignored and software trigger/counters are used. A WFS_CRD_STATCUHIGH threshold will
be sent for a retain bin or WFS_CRD_STATCULOW for a card supply unit. This field is read
only.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16926-16:2020 (E)

18

5. Execute Commands

5.1 WFS_CMD_CRD_DISPENSE_CARD

Description This command will attempt to move a card from the internal supply to a dispensable position. If
the card is only dispensed to the transport then the command WFS_CMD_CRD_EJECT_CARD
should be used to get the card in a position that the consumer can take it.

If the CRD Service Provider is a compound device with the IDC class, then when the card has
been successfully dispensed and is in the transport it can be treated like any other inserted card on
the IDC interface. For example, if the device has read/write capabilities the card can be written to
and read from using the IDC commands.

Input Param LPWFSCRDDISPENSE lpDispense;
typedef struct _wfs_crd_dispense
 {
 USHORT usNumber;
 BOOL bPresent;
 } WFSCRDDISPENSE, *LPWFSCRDDISPENSE;

usNumber
The number of the card unit from which the card should be dispensed. The number of the card
unit is the usNumber returned from WFS_INF_CRD_UNIT_INFO.

bPresent
If this field is set to TRUE then the items will be moved to the exit slot, if it is FALSE the items
will be moved to the transport. The bPresent flag will be ignored if the device cannot dispense to
the transport.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CRD_MEDIAJAM The card is jammed in the transport.
WFS_ERR_CRD_DEVICE_OCCUPIED There is already a card in the dispensing

device. A second card cannot be dispensed.
WFS_ERR_CRD_SHUTTERFAIL The open of the shutter failed due to

manipulation or hardware error.
WFS_ERR_CRD_CARDUNITERROR There is a problem with a card unit. The

WFS_EXEE_CRD_CARDUNITERROR
execute event is posted with the details.

WFS_ERR_CRD_MEDIARETAINED The dispense operation failed the card has
been retained and the device is clear.

Events In addition to the generic events defined in [Ref. 1] the following event can be generated by this
command.

Value Meaning
WFS_EXEE_CRD_CARDUNITERROR A card unit caused an error during a dispense

operation.
WFS_USRE_CRD_CARDUNITTHRESHOLD A card unit has reached a threshold.
WFS_SRVE_CRD_MEDIAREMOVED The card has been taken by the user.

Comments None.

CWA 16926-16:2020 (E)

19

5.2 WFS_CMD_CRD_EJECT_CARD

Description This command only needs to be used if the card is not delivered all the way to the exit slot during
a WFS_CMD_CRD_DISPENSE_CARD operation. An example of this would be for a compound
device where the card is dispensed only to the transport for reading/writing to the magnetic stripe.
After the card is read from and/or written to, the card can then be ejected to the exit for removal
by the consumer.

Input Param None.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CRD_MEDIAJAM The card is jammed.
WFS_ERR_CRD_SHUTTERFAIL The open of the shutter failed due to

manipulation or hardware error.
WFS_ERR_CRD_NOMEDIA No card is present.
WFS_ERR_CRD_MEDIARETAINED The card has been retained during attempts

to eject it. The device is clear and can be
used.

Events In addition to the generic events defined in [Ref.1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_CRD_MEDIAREMOVED The card has been taken by the user.
WFS_USRE_CRD_CARDUNITTHRESHOLD A card unit has reached a threshold.

Comments None.

CWA 16926-16:2020 (E)

20

5.3 WFS_CMD_CRD_RETAIN_CARD

Description The card is removed from its present position and stored in a retain bin. The card dispensing unit
sends an event if the storage capacity of the retain bin is reached. If the storage capacity has
already been reached, and the command cannot be executed then the card remains in its present
position and a WFS_ERR_CRD_RETAINBINFULL error is returned.

Input Param LPWFSCRDRETAINCARD lpRetainCard;
typedef struct _wfs_crd_retain_card
 {
 USHORT usNumber;
 } WFSCRDRETAINCARD, *LPWFSCRDRETAINCARD;

usNumber
The number of the retain bin that the card is to be retracted to. This corresponds to the usNumber
returned by the WFS_INF_CRD_CARD_UNIT_INFO command and must represent a retain bin.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CRD_MEDIAJAM The card is jammed.
WFS_ERR_CRD_NOMEDIA There is no card to retain.
WFS_ERR_CRD_RETAINBINFULL The retain bin is full; no more cards can be

retained. The current card is still in the
device.

WFS_ERR_CRD_CARDUNITERROR A card unit caused an error.
WFS_ERR_CRD_INVALIDRETAINBIN The retain bin specified in the usNumber

input parameter is invalid.

Events In addition to the generic events defined in [Ref.1], the following events can be generated by this
command:

Value Meaning
WFS_USRE_CRD_CARDUNITTHRESHOLD A card unit has reached a threshold.
WFS_SRVE_CRD_MEDIAREMOVED The card has been taken by the user.

Comments If a retain request is received by a device with no retain capability, the
WFS_ERR_UNSUPP_COMMAND error is returned.

CWA 16926-16:2020 (E)

21

5.4 WFS_CMD_CRD_RESET

Description This command is used by the application to perform a hardware reset which will attempt to return
the CRD device to a known good state. This command does not over-ride a lock obtained by
another application or service handle.

Input Param LPWFSCRDRESET lpResetIn;
typedef struct _wfs_crd_reset
 {
 USHORT usAction;
 } WFSCRDRESET, *LPWFSCRDRESET;

usAction
Specifies the action to be performed on any card found within the device as one of the following
values:

Value Meaning
WFS_CRD_EJECT Eject any card found.
WFS_CRD_RETAIN Retain any card found.
WFS_CRD_NOACTION No action should be performed on any card

found.

If the application does not wish to specify an action it can set lpResetIn to NULL. In this case the
Service Provider will determine where to move the card.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CRD_MEDIAJAM A card is jammed. Operator intervention is

required.
WFS_ERR_CRD_SHUTTERFAIL The device is unable to open and close its

shutter.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_CRD_MEDIADETECTED This event is generated when media is

detected during a reset.
WFS_USRE_CRD_CARDUNITTHRESHOLD A card unit has reached a threshold.
WFS_SRVE_CRD_MEDIAREMOVED The card has been taken by the user.

Comments None.

CWA 16926-16:2020 (E)

22

5.5 WFS_CMD_CRD_SET_CARD_UNIT_INFO

Description This command is used to adjust information regarding the contents of the card units present in the
CRD. Some fields may be ignored by the Service Provider if the information can be obtained
from the device. In some cases the fields that can be set is dependent on Service Provider
configuration.

The following fields cannot be changed using this command.

usNumber
usType
usStatus
bHardwareSensor

This command generates the service event WFS_SRVE_CRD_CARDUNITINFOCHANGED to
inform applications that the information for a card unit has been changed.

Input Param LPWFSCRDCUINFO lpCUInfo;

The WFSCRDCUINFO structure is specified in the documentation of the
WFS_INF_CRD_CARD_UNIT_INFO command. This structure contains all of the card units
reported by the WFSCRDCUINFO command.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CRD_INVALIDCARDUNIT Invalid card unit.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a
result of this command:

Value Meaning
WFS_USRE_CRD_CARDUNITTHRESHOLD A card unit has reached a threshold or a

threshold has been cleared.
WFS_SRVE_CRD_CARDUNITINFOCHANGED

A card unit was updated as a result of this
command.

Comments None.

CWA 16926-16:2020 (E)

23

5.6 WFS_CMD_CRD_SET_GUIDANCE_LIGHT

Description This command is used to set the status of the CRD guidance lights. This includes defining the
flash rate, the color and a direction. When an application tries to use a color or direction that is not
supported then the Service Provider will return the generic error WFS_ERR_UNSUPP_DATA.

Input Param LPWFSCRDSETGUIDLIGHT lpSetGuidLight;
typedef struct _wfs_crd_set_guidlight
 {
 WORD wGuidLight;
 DWORD dwCommand;
 } WFSCRDSETGUIDLIGHT, *LPWFSCRDSETGUIDLIGHT;

wGuidLight
Specifies the index of the guidance light to set as one of the values defined within the capabilities
section.

dwCommand
Specifies the state of the guidance light indicator as WFS_CRD_GUIDANCE_OFF or a
combination of the following flags consisting of one type B, optionally one type C and optionally
one type D. If no value of type C is specified then the default color is used. The Service Provider
determines which color is used as the default color.

Value Meaning Type
WFS_CRD_GUIDANCE_OFF The light indicator is turned off. A
WFS_CRD_GUIDANCE_SLOW_FLASH The light indicator is set to flash B

slowly.
WFS_CRD_GUIDANCE_MEDIUM_FLASH The light indicator is set to flash B

medium frequency.
WFS_CRD_GUIDANCE_QUICK_FLASH The light indicator is set to flash B

quickly.
WFS_CRD_GUIDANCE_CONTINUOUS The light indicator is turned on B

continuously (steady).
WFS_CRD_GUIDANCE_RED The light indicator color is set C

to red.
WFS_CRD_GUIDANCE_GREEN The light indicator color is set C

to green.
WFS_CRD_GUIDANCE_YELLOW The light indicator color is set C

to yellow.
WFS_CRD_GUIDANCE_BLUE The light indicator color is set C

to blue.
WFS_CRD_GUIDANCE_CYAN The light indicator color is set C

to cyan.
WFS_CRD_GUIDANCE_MAGENTA The light indicator color is set C

to magenta.
WFS_CRD_GUIDANCE_WHITE The light indicator color is set C

to white.
WFS_CRD_GUIDANCE_ENTRY The light indicator is set D
 to the entry state.
WFS_CRD_GUIDANCE_EXIT The light is set to the exit state. D

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CRD_INVALID_PORT An attempt to set a guidance light to a new

value was invalid because the guidance light
does not exist.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments Guidance light support was added into the CRD primarily to support guidance lights for
workstations where more than one instance of a CRD is present. The original CRD guidance light

CWA 16926-16:2020 (E)

24

mechanism was not able to manage guidance lights for workstations with multiple CRDs. This
command can also be used to set the status of the CRD guidance lights when only one instance of
a CRD is present.

The slow and medium flash rates must not be greater than 2.0 Hz. It should be noted that in order
to comply with American Disabilities Act guidelines only a slow or medium flash rate must be
used.

CWA 16926-16:2020 (E)

25

5.7 WFS_CMD_CRD_POWER_SAVE_CONTROL

Description This command activates or deactivates the power-saving mode.

If the Service Provider receives another execute command while in power saving mode, the
Service Provider automatically exits the power saving mode, and executes the requested
command. If the Service Provider receives an information command while in power saving mode,
the Service Provider will not exit the power saving mode.

Input Param LPWFSCRDPOWERSAVECONTROL lpPowerSaveControl;
typedef struct _wfs_crd_power_save_control
 {
 USHORT usMaxPowerSaveRecoveryTime;
 } WFSCRDPOWERSAVECONTROL, *LPWFSCRDPOWERSAVECONTROL;

usMaxPowerSaveRecoveryTime
Specifies the maximum number of seconds in which the device must be able to return to its
normal operating state when exiting power save mode. The device will be set to the highest
possible power save mode within this constraint. If usMaxPowerSaveRecoveryTime is set to zero
then the device will exit the power saving mode.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CRD_POWERSAVETOOSHORT The power saving mode has not been

activated because the device is not able to
resume from the power saving mode within
the specified
usMaxPowerSaveRecoveryTime value.

WFS_ERR_CRD_POWERSAVEMEDIAPRESENT
The power saving mode has not been
activated because media is present inside the
device.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_CRD_POWER_SAVE_CHANGE The power save recovery time has changed.

Comments None.

CWA 16926-16:2020 (E)

26

5.8 WFS_CMD_CRD_SYNCHRONIZE_COMMAND

Description This command is used to reduce response time of a command (e.g. for synchronization with
display) as well as to synchronize actions of the different device classes. This command is
intended to be used only on hardware which is capable of synchronizing functionality within a
single device class or with other device classes.

The list of execute commands which this command supports for synchronization is retrieved in
the lpdwSynchronizableCommands parameter of the WFS_INF_CRD_CAPABILITIES.

This command is optional, i.e. any other command can be called without having to call it in
advance. Any preparation that occurs by calling this command will not affect any other
subsequent command. However, any subsequent execute command other than the one that was
specified in the dwCommand input parameter will execute normally and may invalidate the
pending synchronization. In this case the application should call the
WFS_CMD_CRD_SYNCHRONIZE_COMMAND again in order to start a synchronization.

Input Param LPWFSCRDSYNCHRONIZECOMMAND lpSynchronizeCommand;
typedef struct _wfs_crd_synchronize_command
 {
 DWORD dwCommand;
 LPVOID lpCmdData;
 } WFSCRDSYNCHRONIZECOMMAND, *LPWFSCRDSYNCHRONIZECOMMAND;

dwCommand
The command ID of the command to be synchronized and executed next.

lpCmdData
Pointer to data or a data structure that represents the parameter that is normally associated with
the command that is specified in dwCommand. For example, if dwCommand is
WFS_CMD_CRD_DISPENSE then lpCmdData will point to a WFSCRDDISPENSE structure.
This parameter can be NULL if no command input parameter is needed or if this detail is not
needed to synchronize for the command.

It will be device-dependent whether the synchronization is effective or not in the case where the
application synchronizes for a command with this command specifying a parameter but
subsequently executes the synchronized command with a different parameter. This case should
not result in an error; however, the preparation effect could be different from what the application
expects. The application should, therefore, make sure to use the same parameter between
lpCmdData of this command and the subsequent corresponding execute command.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CRD_COMMANDUNSUPP The command specified in the dwCommand

field is not supported by the Service
Provider.

WFS_ERR_CRD_SYNCHRONIZEUNSUPP The preparation for the command specified
in the dwCommand with the parameter
specified in the lpCmdData is not supported
by the Service Provider.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments For sample flows of this synchronization see the [Ref 1] Appendix C.

CWA 16926-16:2020 (E)

27

6. Events

6.1 WFS_SRVE_CRD_MEDIAREMOVED

Description This event is sent when the media is taken from the exit slot.

Event Param None.

Comments This event occurs after the completion of a function that ejects the media, it is not an execute
event.

CWA 16926-16:2020 (E)

28

6.2 WFS_SRVE_CRD_MEDIADETECTED

Description This event is generated when media is detected in the device during a reset operation.

Event Param LPWFSCRDMEDIADETECTED lpMediaDetected;
typedef struct _wfs_crd_media_detected
 {
 WORD wPosition;
 USHORT usNumber;
 } WFSCRDMEDIADETECTED, *LPWFSCRDMEDIADETECTED;

wPosition
Specifies the media position after the reset operation, as one of the following values:

Value Meaning
WFS_CRD_MEDIARETAINED The media was retained during the reset

operation.
WFS_CRD_MEDIAPRESENT The media is present somewhere in the

transport.
WFS_CRD_MEDIAEXITING The media is in the exit slot.
WFS_CRD_MEDIAJAMMED The media is jammed in the device.
WFS_CRD_MEDIAUNKNOWN The media is in an unknown position.

usNumber
Number of the retain bin the media was retained to. This number has to be between one and the
number of bins supported by this device. It is only relevant if wPosition equals
WFS_CRD_MEDIARETAINED.

Comments None.

CWA 16926-16:2020 (E)

29

6.3 WFS_USRE_CRD_CARDUNITTHRESHOLD

Description This user event is generated when a threshold condition has occurred in one of the card units.

Event Param LPWFSCRDCARDUNIT lpCardUnit;

lpCardUnit
Pointer to a WFSCRDCARDUNIT structure describing the card unit on which the threshold
condition occurred. See lpCardUnit->usStatus for the current status. For a description of the
WFSCRDCARDUNIT structure see the definition of the WFS_INF_CRD_CARD_UNIT_INFO
command.

Comments None.

CWA 16926-16:2020 (E)

30

6.4 WFS_SRVE_CRD_CARDUNITINFOCHANGED

Description This service event is generated when information about a card unit has changed. This event will
also be posted on successful completion of the following commands:

WFS_CMD_CRD_SET_CARD_UNIT_INFO

Event Param LPWFSCRDCARDUNIT lpCardUnit;

lpCardUnit
Pointer to the changed card unit structure. For a description of the WFSCRDCARDUNIT
structure see the definition of the WFS_INF_CRD_CARD_UNIT_INFO command.

Comments None.

CWA 16926-16:2020 (E)

31

6.5 WFS_EXEE_CRD_CARDUNITERROR

Description This execute event is generated if there is a problem with a card unit during a dispense operation.

Event Param LPWFSCRDCUERROR lpCardUnitError;
typedef struct _wfs_crd_cu_error
 {
 WORD wFailure;
 LPWFSCRDCARDUNIT lpCardUnit;
 } WFSCRDCUERROR, *LPWFSCRDCUERROR;

wFailure
Specifies the kind of failure that occurred in the card unit. Values are:

Value Meaning
WFS_CRD_CARDUNITEMPTY Specified card unit is empty.
WFS_CRD_CARDUNITERROR Specified card unit has malfunctioned.
WFS_CRD_CARDUNITINVALID Specified card unit ID is invalid.

lpCardUnit
Pointer to the card unit structure that caused the problem. The WFSCRDCARDUNIT structure is
defined in the documentation of the WFS_INF_CRD_CARD_UNIT_INFO command. It is
possible that this pointer may be NULL if the wFailure field is
WFS_CRD_CARDUNITINVALID.

Comments None.

CWA 16926-16:2020 (E)

32

6.6 WFS_SRVE_CRD_DEVICEPOSITION

Description This service event reports that the device has changed its position status.

Event Param LPWFSCRDDEVICEPOSITION lpDevicePosition;
typedef struct _wfs_crd_device_position
 {
 WORD wPosition;
 } WFSCRDDEVICEPOSITION, *LPWFSCRDDEVICEPOSITION;

wPosition
Position of the device as one of the following values:

Value Meaning
WFS_CRD_DEVICEINPOSITION The device is in its normal operating

position.
WFS_CRD_DEVICENOTINPOSITION The device has been removed from its

normal operating position.
WFS_CRD_DEVICEPOSUNKNOWN The position of the device cannot be

determined.

Comments None.

CWA 16926-16:2020 (E)

33

6.7 WFS_SRVE_CRD_POWER_SAVE_CHANGE

Description This service event specifies that the power save recovery time has changed.

Event Param LPWFSCRDPOWERSAVECHANGE lpPowerSaveChange;
typedef struct _wfs_crd_power_save_change
 {
 USHORT usPowerSaveRecoveryTime;
 } WFSCRDPOWERSAVECHANGE, *LPWFSCRDPOWERSAVECHANGE;

usPowerSaveRecoveryTime
Specifies the actual number of seconds required by the device to resume its normal operational
state. This value is zero if the device exited the power saving mode.

Comments If another device class compound with this device enters into a power saving mode this device
will automatically enter into the same power saving mode and this event will be generated.

CWA 16926-16:2020 (E)

34

7. C-Header File

/**
* *
* xfscrd.h XFS - Card Dispenser (CRD) definitions *
* *
* Version 3.40 (December 6 2019) *
* *
**/

#ifndef __INC_XFSCRD__H
#define __INC_XFSCRD__H

#ifdef __cplusplus
extern "C" {
#endif

#include <xfsapi.h>

/* be aware of alignment */
#pragma pack(push,1)

/* values of WFSCRDCAPS.wClass */

#define WFS_SERVICE_CLASS_CRD (14)
#define WFS_SERVICE_CLASS_VERSION_CRD (0x2803) /* Version 3.40 */
#define WFS_SERVICE_CLASS_NAME_CRD "CRD"

#define CRD_SERVICE_OFFSET (WFS_SERVICE_CLASS_CRD * 100)

/* CRD Info Commands */

#define WFS_INF_CRD_STATUS (CRD_SERVICE_OFFSET + 1)
#define WFS_INF_CRD_CAPABILITIES (CRD_SERVICE_OFFSET + 2)
#define WFS_INF_CRD_CARD_UNIT_INFO (CRD_SERVICE_OFFSET + 3)

/* CRD Execute Commands */

#define WFS_CMD_CRD_DISPENSE_CARD (CRD_SERVICE_OFFSET + 1)
#define WFS_CMD_CRD_EJECT_CARD (CRD_SERVICE_OFFSET + 2)
#define WFS_CMD_CRD_RETAIN_CARD (CRD_SERVICE_OFFSET + 3)
#define WFS_CMD_CRD_RESET (CRD_SERVICE_OFFSET + 4)
#define WFS_CMD_CRD_SET_GUIDANCE_LIGHT (CRD_SERVICE_OFFSET + 5)
#define WFS_CMD_CRD_SET_CARD_UNIT_INFO (CRD_SERVICE_OFFSET + 6)
#define WFS_CMD_CRD_POWER_SAVE_CONTROL (CRD_SERVICE_OFFSET + 7)
#define WFS_CMD_CRD_SYNCHRONIZE_COMMAND (CRD_SERVICE_OFFSET + 8)

/* CRD Events */

#define WFS_SRVE_CRD_MEDIAREMOVED (CRD_SERVICE_OFFSET + 1)
#define WFS_SRVE_CRD_CARDUNITINFOCHANGED (CRD_SERVICE_OFFSET + 2)
#define WFS_SRVE_CRD_MEDIADETECTED (CRD_SERVICE_OFFSET + 3)
#define WFS_USRE_CRD_CARDUNITTHRESHOLD (CRD_SERVICE_OFFSET + 4)
#define WFS_EXEE_CRD_CARDUNITERROR (CRD_SERVICE_OFFSET + 5)
#define WFS_SRVE_CRD_DEVICEPOSITION (CRD_SERVICE_OFFSET + 6)
#define WFS_SRVE_CRD_POWER_SAVE_CHANGE (CRD_SERVICE_OFFSET + 7)

/* values of WFSCRDSTATUS.fwDevice */

#define WFS_CRD_DEVONLINE WFS_STAT_DEVONLINE
#define WFS_CRD_DEVOFFLINE WFS_STAT_DEVOFFLINE
#define WFS_CRD_DEVPOWEROFF WFS_STAT_DEVPOWEROFF
#define WFS_CRD_DEVNODEVICE WFS_STAT_DEVNODEVICE
#define WFS_CRD_DEVHWERROR WFS_STAT_DEVHWERROR
#define WFS_CRD_DEVUSERERROR WFS_STAT_DEVUSERERROR
#define WFS_CRD_DEVBUSY WFS_STAT_DEVBUSY
#define WFS_CRD_DEVFRAUDATTEMPT WFS_STAT_DEVFRAUDATTEMPT
#define WFS_CRD_DEVPOTENTIALFRAUD WFS_STAT_DEVPOTENTIALFRAUD

CWA 16926-16:2020 (E)

35

/* values of WFSCRDSTATUS.fwDispenser */

#define WFS_CRD_DISPCUOK (0)
#define WFS_CRD_DISPCUSTATE (1)
#define WFS_CRD_DISPCUSTOP (2)
#define WFS_CRD_DISPCUUNKNOWN (3)

/* values of WFSCRDSTATUS.fwMedia,
 WFSCRDRETAINCARD.fwPosition, and
 WFSCRDMEDIADETECTED.wPosition */

#define WFS_CRD_MEDIAPRESENT (1)
#define WFS_CRD_MEDIANOTPRESENT (2)
#define WFS_CRD_MEDIAJAMMED (3)
#define WFS_CRD_MEDIANOTSUPP (4)
#define WFS_CRD_MEDIAUNKNOWN (5)
#define WFS_CRD_MEDIAEXITING (6)
#define WFS_CRD_MEDIARETAINED (7)

/* values of WFSCRDSTATUS.fwTransport */

#define WFS_CRD_TPOK (0)
#define WFS_CRD_TPINOP (1)
#define WFS_CRD_TPUNKNOWN (2)
#define WFS_CRD_TPNOTSUPPORTED (3)

/* Size and max index of dwGuidLights array */

#define WFS_CRD_GUIDLIGHTS_SIZE (32)
#define WFS_CRD_GUIDLIGHTS_MAX (WFS_CRD_GUIDLIGHTS_SIZE - 1)

/* Indices of WFSCRDSTATUS.dwGuidLights [...]
 WFSCRDCAPS.dwGuidLights [...] */

#define WFS_CRD_GUIDANCE_CARDDISP (0)

/* Values of WFSCRDSTATUS.dwGuidLights [...]
 WFSCRDCAPS.dwGuidLights [...] */

#define WFS_CRD_GUIDANCE_NOT_AVAILABLE (0x00000000)
#define WFS_CRD_GUIDANCE_OFF (0x00000001)
#define WFS_CRD_GUIDANCE_SLOW_FLASH (0x00000004)
#define WFS_CRD_GUIDANCE_MEDIUM_FLASH (0x00000008)
#define WFS_CRD_GUIDANCE_QUICK_FLASH (0x00000010)
#define WFS_CRD_GUIDANCE_CONTINUOUS (0x00000080)
#define WFS_CRD_GUIDANCE_RED (0x00000100)
#define WFS_CRD_GUIDANCE_GREEN (0x00000200)
#define WFS_CRD_GUIDANCE_YELLOW (0x00000400)
#define WFS_CRD_GUIDANCE_BLUE (0x00000800)
#define WFS_CRD_GUIDANCE_CYAN (0x00001000)
#define WFS_CRD_GUIDANCE_MAGENTA (0x00002000)
#define WFS_CRD_GUIDANCE_WHITE (0x00004000)
#define WFS_CRD_GUIDANCE_ENTRY (0x00100000)
#define WFS_CRD_GUIDANCE_EXIT (0x00200000)

/* values of WFSCRDSTATUS.wDevicePosition
 WFSCRDDEVICEPOSITION.wPosition */

#define WFS_CRD_DEVICEINPOSITION (0)
#define WFS_CRD_DEVICENOTINPOSITION (1)
#define WFS_CRD_DEVICEPOSUNKNOWN (2)
#define WFS_CRD_DEVICEPOSNOTSUPP (3)

/*values of WFSCRDCAPS.fwDispenseTo */

#define WFS_CRD_DISPTO_CONSUMER (0x0001)
#define WFS_CRD_DISPTO_TRANSPORT (0x0002)

/*values of WFSCRDCARDUNIT.usStatus */

CWA 16926-16:2020 (E)

36

#define WFS_CRD_STATCUOK (0)
#define WFS_CRD_STATCULOW (1)
#define WFS_CRD_STATCUEMPTY (2)
#define WFS_CRD_STATCUINOP (3)
#define WFS_CRD_STATCUMISSING (4)
#define WFS_CRD_STATCUHIGH (5)
#define WFS_CRD_STATCUFULL (6)
#define WFS_CRD_STATCUUNKNOWN (7)

/*values of WFSCRDCARDUNIT.usType */

#define WFS_CRD_SUPPLYBIN (1)
#define WFS_CRD_RETAINBIN (2)

/* values of WFSCRDSTATUS.fwShutter */

#define WFS_CRD_SHTCLOSED (0)
#define WFS_CRD_SHTOPEN (1)
#define WFS_CRD_SHTJAMMED (2)
#define WFS_CRD_SHTUNKNOWN (3)
#define WFS_CRD_SHTNOTSUPPORTED (4)

/* values of WFSCRDCAPS.fwPowerOnOption,
 WFSCRDCAPS.fwPowerOffOption,
 WFSCRDRESET.usAction */

#define WFS_CRD_NOACTION (1)
#define WFS_CRD_EJECT (2)
#define WFS_CRD_RETAIN (3)
#define WFS_CRD_EJECTTHENRETAIN (4)

/*values of WFSCRDCUERROR.wFailure */

#define WFS_CRD_CARDUNITEMPTY (1)
#define WFS_CRD_CARDUNITERROR (2)
#define WFS_CRD_CARDUNITINVALID (3)

/* values of WFSCRDSTATUS.wAntiFraudModule */

#define WFS_CRD_AFMNOTSUPP (0)
#define WFS_CRD_AFMOK (1)
#define WFS_CRD_AFMINOP (2)
#define WFS_CRD_AFMDEVICEDETECTED (3)
#define WFS_CRD_AFMUNKNOWN (4)

/* XFS CRD Errors */

#define WFS_ERR_CRD_MEDIAJAM (-(CRD_SERVICE_OFFSET + 0))
#define WFS_ERR_CRD_NOMEDIA (-(CRD_SERVICE_OFFSET + 1))
#define WFS_ERR_CRD_MEDIARETAINED (-(CRD_SERVICE_OFFSET + 2))
#define WFS_ERR_CRD_RETAINBINFULL (-(CRD_SERVICE_OFFSET + 3))
#define WFS_ERR_CRD_SHUTTERFAIL (-(CRD_SERVICE_OFFSET + 4))
#define WFS_ERR_CRD_DEVICE_OCCUPIED (-(CRD_SERVICE_OFFSET + 5))
#define WFS_ERR_CRD_CARDUNITERROR (-(CRD_SERVICE_OFFSET + 6))
#define WFS_ERR_CRD_INVALIDCARDUNIT (-(CRD_SERVICE_OFFSET + 7))
#define WFS_ERR_CRD_INVALID_PORT (-(CRD_SERVICE_OFFSET + 8))
#define WFS_ERR_CRD_INVALIDRETAINBIN (-(CRD_SERVICE_OFFSET + 9))
#define WFS_ERR_CRD_POWERSAVETOOSHORT (-(CRD_SERVICE_OFFSET + 10))
#define WFS_ERR_CRD_POWERSAVEMEDIAPRESENT (-(CRD_SERVICE_OFFSET + 11))
#define WFS_ERR_CRD_COMMANDUNSUPP (-(CRD_SERVICE_OFFSET + 12))
#define WFS_ERR_CRD_SYNCHRONIZEUNSUPP (-(CRD_SERVICE_OFFSET + 13))

/*===*/
/* CRD Info Command Structures and variables */
/*===*/

typedef struct _wfs_crd_status
{

CWA 16926-16:2020 (E)

37

 WORD fwDevice;
 WORD fwDispenser;
 WORD fwTransport;
 WORD fwMedia;
 WORD fwShutter;
 LPSTR lpszExtra;
 DWORD dwGuidLights[WFS_CRD_GUIDLIGHTS_SIZE];
 WORD wDevicePosition;
 USHORT usPowerSaveRecoveryTime;
 WORD wAntiFraudModule;
} WFSCRDSTATUS, *LPWFSCRDSTATUS;

typedef struct _wfs_crd_caps
{
 WORD wClass;
 BOOL bCompound;
 WORD fwPowerOnOption;
 WORD fwPowerOffOption;
 BOOL bCardTakenSensor;
 WORD fwDispenseTo;
 LPSTR lpszExtra;
 DWORD dwGuidLights[WFS_CRD_GUIDLIGHTS_SIZE];
 BOOL bPowerSaveControl;
 BOOL bAntiFraudModule;
 LPDWORD lpdwSynchronizableCommands;
} WFSCRDCAPS, *LPWFSCRDCAPS;

typedef struct _wfs_crd_cardunit
{
 USHORT usNumber;
 LPSTR lpszCardName;
 USHORT usType;
 ULONG ulInitialCount;
 ULONG ulCount;
 ULONG ulRetainCount;
 ULONG ulThreshold;
 USHORT usStatus;
 BOOL bHardwareSensor;
} WFSCRDCARDUNIT, *LPWFSCRDCARDUNIT;

typedef struct _wfs_crd_cu_info
{
 USHORT usCount;
 LPWFSCRDCARDUNIT *lppList;
} WFSCRDCUINFO, *LPWFSCRDCUINFO;

/*===*/
/* CRD Execute Command Structures */
/*===*/

typedef struct _wfs_crd_dispense
{
 USHORT usNumber;
 BOOL bPresent;
} WFSCRDDISPENSE, *LPWFSCRDDISPENSE;

typedef struct _wfs_crd_retain_card
{
 USHORT usNumber;
} WFSCRDRETAINCARD, *LPWFSCRDRETAINCARD;

typedef struct _wfs_crd_reset
{
 USHORT usAction;
} WFSCRDRESET, *LPWFSCRDRESET;

typedef struct _wfs_crd_set_guidlight
{
 WORD wGuidLight;
 DWORD dwCommand;

CWA 16926-16:2020 (E)

38

} WFSCRDSETGUIDLIGHT, *LPWFSCRDSETGUIDLIGHT;

typedef struct _wfs_crd_power_save_control
{
 USHORT usMaxPowerSaveRecoveryTime;
} WFSCRDPOWERSAVECONTROL, *LPWFSCRDPOWERSAVECONTROL;

typedef struct _wfs_crd_synchronize_command
{
 DWORD dwCommand;
 LPVOID lpCmdData;
} WFSCRDSYNCHRONIZECOMMAND, *LPWFSCRDSYNCHRONIZECOMMAND;

/*===*/
/* CRD Message Structures */
/*===*/

typedef struct _wfs_crd_media_detected
{
 WORD wPosition;
 USHORT usNumber;
} WFSCRDMEDIADETECTED, *LPWFSCRDMEDIADETECTED;

typedef struct _wfs_crd_cu_error
{
 WORD wFailure;
 LPWFSCRDCARDUNIT lpCardUnit;
} WFSCRDCUERROR, *LPWFSCRDCUERROR;

typedef struct _wfs_crd_device_position
{
 WORD wPosition;
} WFSCRDDEVICEPOSITION, *LPWFSCRDDEVICEPOSITION;

typedef struct _wfs_crd_power_save_change
{
 USHORT usPowerSaveRecoveryTime;
} WFSCRDPOWERSAVECHANGE, *LPWFSCRDPOWERSAVECHANGE;

/* restore alignment */
#pragma pack(pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __INC_XFSCRD__H */

	1. Introduction
	1.1 Background to Release 3.40
	1.2 XFS Service-Specific Programming

	2. Card Dispensers
	3. References
	4. Info Commands
	4.1 WFS_INF_CRD_STATUS
	4.2 WFS_INF_CRD_CAPABILITIES
	4.3 WFS_INF_CRD_CARD_UNIT_INFO

	5. Execute Commands
	5.1 WFS_CMD_CRD_DISPENSE_CARD
	5.2 WFS_CMD_CRD_EJECT_CARD
	5.3 WFS_CMD_CRD_RETAIN_CARD
	5.4 WFS_CMD_CRD_RESET
	5.5 WFS_CMD_CRD_SET_CARD_UNIT_INFO
	5.6 WFS_CMD_CRD_SET_GUIDANCE_LIGHT
	5.7 WFS_CMD_CRD_POWER_SAVE_CONTROL
	5.8 WFS_CMD_CRD_SYNCHRONIZE_COMMAND

	6. Events
	6.1 WFS_SRVE_CRD_MEDIAREMOVED
	6.2 WFS_SRVE_CRD_MEDIADETECTED
	6.3 WFS_USRE_CRD_CARDUNITTHRESHOLD
	6.4 WFS_SRVE_CRD_CARDUNITINFOCHANGED
	6.5 WFS_EXEE_CRD_CARDUNITERROR
	6.6 WFS_SRVE_CRD_DEVICEPOSITION
	6.7 WFS_SRVE_CRD_POWER_SAVE_CHANGE

	7. C-Header File

